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Abstract

This paper deals with the possibility and the ®rst measurements of thermal contact conductance of cylindrical

joints by the periodic method at high temperature. The mathematical principle is presented. The calibration of the
method is performed on a composite nickel/nickel cylinder, the interface of which has a controlled macroroughness.
The experimental results are compared with the results of a geometric conductance model. A good agreement is
observed. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The heat transfer in a structure built from several el-

ements in contact does not only depend on the thermal

properties of each unit element, but also on the quality

of the thermal contact between them. The study of

thermal contacts has received an increasing interest in

recent literature [1] as it becomes more and more im-

portant in numerous applications like high density

microelectronics, composite materials, solidi®cation

processes, accurate contact temperature measurements

etc. The heat transfer across a contact is classically

represented by a contact conductance coe�cient, which

is de®ned, in steady-state, as the ratio of the heat ¯ow

density to the temperature drop at the interface.

Experimental setups designed for contact conduc-
tance measurements generally feature a cylindrical
sample made of two cylinders in contact along their

bases. The test sample is placed between a heat source
and a heat sink in a vertical cylindrical column which
undergoes an axial steady temperature gradient and an

axial load. Two series of thermocouples in the column
allows the temperature distribution in each part of the
sample to be known. By knowing the thermal conduc-

tivities of the materials brought in contact, the heat
¯ow can be calculated. The temperature drop at the
interface is obtained by extrapolation of the two bulk
temperature distributions. The contact conductance is

then easily worked out from the de®nition.
Methods based on a thermal regime where the tem-

perature varies with time are considerably less used.

Among them, the early works of Laurent et al. [2], il-
lustrate one of the applications of the well known ¯ash
method to contact conductance measurementss. The

periodic method has also been used. Close to the orig-
inal AngstroÈ m method [3], the works of Saint-Blanquet
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and Bardon [4], Robinson and Tomsic [5], and Cordier
et al. [6] involve long cylindrical samples. Their setups
allow the conductance measurements to be performed

under both, steady and periodic states for comparison.
It is shown that the accuracy under periodic regime is
comparable to that under steady ¯ow. More recently,

Nguyen-Minh and Neuer [7] have demonstrated the
applicability of the Cowan's method [8], for the
measurement of the contact conductance of a two-

layer disk shaped sample.
All the above mentioned methods deal with plane

contacts, on the other hand the cylindrical joints are
considerably less commonly studied [9±10]. Madhusu-

dana and Litvak [11] mention that ``there were only a
half-dozen works dealing speci®cally with cylindrical
joints compared with more than 150 studies on ¯at

joints'' during the seventies. To the extent that cylind-
rical contacts occur very often in engineering appli-
cations, it can be concluded that speci®c studies are

needed.
As no previous work has been found concerning the

application of the periodic method for conductance
measurement across a cylindrical joint, at ®rst, the

mathematical basis of the method is exposed.

2. Mathematical basis of the measurement

In the classical AngstroÈ m method, the amplitude
ratio and the phase change of the thermal wave
(strictly speaking this is not a wave but the term will

be thus employed in the following) between the two
measurement points, are explicit functions of the ther-
mal di�usivity. In this part, the aim is to ®nd out simi-

lar functions which connect the amplitude ratio or the
phase change of the thermal wave to the contact con-
ductance.

Nomenclature

a distance between the axis of the cylinder and
the interface in the composite sample

Arg argument of a complex number

b distance between the axis of the cylinder and
the outer thermocouple

ber Kelvin function of zero order, real part of I0
bei Kelvin function of zero order, imaginary part

of I0
Bi Biot number, =a�h/l
c radius of the cylindrical sample
Cp heat capacity
e inverse of the thermal di�usion length, ����������

o=a
p

I0 modi®ed Bessel function I of zero order
K0 modi®ed Bessel function K of zero order
ker modi®ed Kelvin function of zero order, real

part of K0

kei modi®ed Kelvin function of zero order, im-
aginary part of K0

Mod modulus of a complex number
P period of the thermal wave
r radial coordinate

t time
T temperature
a thermal di�usivity

j argument of the temperature
F phase change of the temperature
l thermal conductivity
h contact conductance

y amplitude of the temperature
r density
o angular velocity

Fig. 1. Sample composite cylinder showing the holes of

f 1� 10ÿ3 m at r = 0 and r = b in which are inserted

the hot junctions of the thermocouple circuit. Dimensions in

10ÿ3 m.
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Fig. 1 shows the composite cylindrical sample. The
material I extends from the center (r = 0) to the inter-

face position (r = a ). The material II extends from
the interface (r = a ) to the sample radius (r = c ).
The inner and outer thermocouples are located at (r =

0) and (r = b ), respectively (a < b < c ). The thermal
conductivities and thermal di�usivities of the two ma-
terials in contact are denoted by lI, lII, aI, aII, respect-

ively. In cylindrical coordinates, assuming that the
heat transfer is 1D, the temperature (T ) only depends
on the radial distance (r ) and the time (t ). Then the

system of di�erential equations (1) and (2) is to be
solved:

0RrRa:
@ 2T

@r 2
� 1

r

@T

@ r
ÿ 1

aI

@T

@ t
� 0 �1�

aRrRc:
@ 2T

@ r 2
� 1

r

@T

@ r
ÿ 1

aII

@T

@ t
� 0 �2�

The sample surface is heated periodically at (r = c )

with the angular velocity �o). The amplitude of the os-
cillation at the location of the outer thermocouple (r
= b ) is denoted by �y(b )). Hence, the boundary con-

dition is written as:

T�b, t� � y�b�cos ot �3�
At the interface, the heat transfer is described by the

thermal contact conductance coe�cient (h ). A math-
ematical discontinuity of the temperature ®eld is intro-
duced, the magnitude of which is proportional to the

heat ¯ow yielding the system of equations (4) and (5):

lI

�
@T

@r

�
r�aÿ
� h

ÿ
T�a�� ÿ T�aÿ�

� �4�

lII

�
@T

@ r

�
r�a�
� h

ÿ
T�a�� ÿ T�aÿ�

� �5�

Eqs. (4) and (5) are based on the assumption that
the contact conductance, de®ned formally under steady
heat ¯ow, is still valid under periodic heat ¯ow.

According to Robinson and Tomsic [5], transient cor-
rections are necessary only for a time scale of 0.1 s,
which is less than the range of periods used in this
study (60±650 s). In the works of Cordier et al. [6], ®ve

models of contact conditions featuring di�erent setups
of resistances and capacities in series or parallel are
correlated with experimental results. In the range of

period (30±500 s), the simple contact conductance
model was found to be the only one which ®ts the ex-
perimental results well. The introduction of an ad-

ditional thermal capacity in the contact conditions is
discussed by Fourcher et al. [12]. These authors show
that, in fact, it is necessary to introduce a lack of ther-

mal capacity because the heat capacities of the ma-
terials in contact are generally greater than the heat

capacity of the interstitial medium. In the following,
the simple conductance scheme will be used to the
extent that the capacity e�ect must represent only a

weak correction, the magnitude of which is certainly
smaller than the magnitude of the experimental errors
in the present setup.

In the above equations, the parameters �lI, lII, aI,
aII, a, b, o� are supposed to be known quantities. The
conductance (h ) is sought as a function of the ampli-

tude ratio Y � y�0�=y�b� and the phase change F �
j�0� ÿ j�b� of the periodic temperature, which are
worked out from digital Fourier transform of the tem-
perature recordings at (r = 0) and (r = b ).

In the periodic state, a complex temperature is
de®ned as: T ��r, t� � y��r� � exp�iot�, where �y�(r )) is a
complex amplitude. The real part of (T�) represents

the physical temperature. The reciprocal thermal di�u-
sion lengths in the two materials are denoted by: eI �����������
o=aI

p
, eII �

�����������
o=aII

p
: Eqs. (1)±(5) can be put in the

form:

@ 2y�

@ r 2
� 1

r

@y�

@ r
ÿ i � e 2I � y� � 0 �6�

@ 2y�

@ r 2
� 1

r

@y�

@ r
ÿ i � e 2II � y� � 0 �7�

T ��b, t� � y�b� � exp�iot� �8�

lI

�
@y�

@ r

�
r�aÿ
� h

ÿ
y��a�� ÿ y��aÿ�

� �9�

and

lII

�
@y�

@r

�
r�a�
� h

ÿ
y��a�� ÿ y��aÿ�

� �10�

Relations (6) and (7) are Bessel equations which

admit solutions in the form:

y�I�r� � A � I0
ÿ
eI � r � i1=2

�
� B � K0

ÿ
eI � r � i1=2

�
�11�

y�II�r� � C � I0
ÿ
eII � r � i1=2

�
�D � K0

ÿ
eII � r � i1=2

�
�12�

where (I0) and (K0) are the modi®ed Bessel functions

of zero order. K0(x ) tends to in®nity as x approaches
(0), which implies that the coe�cient (B ) in Eq. (11)
equals zero. The three remaining unknown coe�cients
(A, C, D ) can be deduced from Eqs. (8±10). For

writing simpli®cation, let the Bessel functions and the
®rst derivatives be denoted by:

II
r � I0

ÿ
eI � r � i1=2

�
I 0 Ir � I 00

ÿ
eI � r � i1=2

�
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III
r � I0

ÿ
eII � r � i1=2

�
I 0 IIr � I 00

ÿ
eII � r � i1=2

�

KII
r � K0

ÿ
eII � r � i1=2

�
K 0 II

r � K 00
ÿ
eII � r � i1=2

�
Substitution in Eqs. (11) and (12) yields:

y�I�r� � A � II
r �13�

y�II�r� � C � III
r �D � KII

r �14�

and in Eq. (8):

y�II�b� � y�b� �15�

Substitution of Eqs. (13) and (14) into Eqs. (9), (10)
and (15), using the notations gI � eI � lI � i1=2 and
gII � eII � lII � i1=2, gives:

gI � A � I 0 Ia � h
ÿ
C � III

a �D � KII
a ÿ A � II

a

� �16�

gII �
ÿ
C � I 0 II

a �D � K 0 II
a

� � h
ÿ
C � III

a �D � KII
a ÿ A � II

a

�
�17�

y�b� � C � III
b �D � KII

b �18�

These simultaneous equations are put in matrix

form:24 0 III
b KII

b

gI � I 0 I
a � h � II

a ÿh � III
a ÿh � KII

a

h � II
a gII � I 0 II

a ÿ h � III
a gII � K 0 II

a ÿ h � KII
a

35
24A
C
D

35 �
24 y�b�
0
0

35
�19�

The determinant of the 3� 3 square matrix is then:

Det � gI � gII � I 0 Ia
ÿ
I 0 IIa � KII

b ÿ III
b � K 0 II

a

�� h � �gII

� II
a

ÿ
I 0 IIa � KII

b ÿ III
b � K 0 IIa

�� gI � I 0 Ia
ÿ
III
b � KII

a

ÿ III
a � KII

b

� �20�

The amplitude and the phase of the temperature at

the center of the sample are respectively the module
and the argument of the complex temperature at
�r � 0): I0�0� � 1, hence y�I�0� � A and T ��0, t� �
A � exp�iot�: Thus, �Y� and �F� are independent of (C )
and (D ), as a consequence, we are only interested in
solving for (A ) in the system (19):

A � 1

Det

�������
y�b� III

b KII
b

0 ÿh � III
a ÿh � KII

a

0 gII � I 0 IIa ÿ h � III
a gII � K 0 IIa ÿ h � K II

a

�������
�21�

Calculating the determinant in Eq. (21) yields:

A � y�b� � gII:h

Det

ÿ
I 0 IIa � KII

a ÿ III
a � K 0 IIa

� �22�

Using the Wronskian relation [13]:

I 0u�z� � Ku�z� ÿ Iu�z� � K 0u�z� �
1

z
8u, z 6�0

where z � eII � a � i1=2, Eq. (22) reduces to:

A � lII � h � y�b�
a � Det

�23�

The measurement of the amplitude ratio �Y�
between (r = 0) and (r = b ) allows one to deduce (h )
from Eq. (23):

y�0� � Mod
ÿ
T ��0, t�� � Mod�A� � lII � h � y�b�

a �Mod�Det�

h � 1

lII

�Y � a �Mod�Det� �24�

Eq. (20) shows o� that the determinant is a linear
function of (h ), its module can be written as: Mod�Det�
�

�������������
a2 � h 2

p
� a1 � h� a0: Squaring Eq. (24) yields an

equation of the second degree in (h ). Only the positive
root have a physical signi®cance.
The phase of the temperature at the center of the

sample is:

j�0� � Arg
ÿ
T ��0, t�� � Arg�A� � ot

� ÿArg�Det� � ot �25�

At r � b:j�b� � ot, hence, the phase change �F� of
the wave between (r = b ) and (r = 0) is simply:

F � ÿArg�A� � Arg�Det� �26�

The measurement of �F� gives a second equation
from which (h ) can be infered.

In the particular case of similar materials in contact,
the notations can be reduced to:lI� lII � l, aI� aII �
a, eI � eII � e, gI � gII � g andII

r � III
r � Ir, KI

r �KII
r �

Kr, I 0r
I�I 0r II�I 0r, K 0r

I�K 0r II�K 0r:
Using the Wronskian relation again, the determinant

now becomes:

Det � l

�
i � l � e 2 � I 0a

ÿ
I 0a � Kb ÿ Ib � K 0a

�� h

a
� Ib
�

�27�
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By substituting Eq. (27) into Eq. (23), if the Biot
dimensionless number is denoted by �Bi � h � a=l), the
coe�cient (A ) is written in the form:

A � y�b� � Bi
�e � a� 2i � I 0a

ÿ
I 0a � Kb ÿ Ib � K 0a

�� Bi � Ib
�28�

Eq. (28) depends on three dimensionless numbers:
(Bi ), (e�a ) and (e�b ). For a perfect thermal contact, the

conductance (h ) and the Biot number (Bi ) approach
in®nity. The ®rst term in the denominator of the re-
lation (28) is negligible towards the second one and

(A ) reduces to:

A � y�b�
II
b

�29�

Using Eq. (13), the complex temperature is written

as: T ��r, t� � y�b� � II
r

II
b

� exp�iot� which is the solution of
the heat transfer equation for an in®nite homogeneous
cylinder under periodic boundary conditions.

3. Experiment

3.1. Apparatus

The experimental setup (Fig. 2) is the same as that

for thermal di�usivity measurements [14], and will not
be described again in detail. The main furnace controls

the average temperature. The microfurnace power
supply is modulated by a very low frequency generator
(0.001±1 Hz) to give the AC component of the tem-

perature. Inside the cylindrical sample �H � 0:07 m, �
0:035 m), the temperature is measured at the center (r
= 0 ) and at the distance �b � 0:015 m) by means of

split intrinsic Pt/Pt±Rh 10% thermocouples which are
a requisite for measurements up to 1800 K. Taking
into account that the radius c is imposed by the inner

diameter of the microfurnace, the a and b distances
have been optimized to allow the measurements of
thermal resistances in the range 10ÿ2±10 W cm2 Kÿ1.
A digital scanner/voltmeter and a microcomputer

allow to record and to process the electric response of
the sensors. The axial heat ¯ow is minimized in the
sample in two ways: (i) Some axial thermal resistances

are set up by cutting the sample in disks of various
thicknesses as shown in Fig. 1. The height of the cylin-
der where the measurement is performed is optimized

by the calculation previously published [15]. (ii) The

Fig. 3. Macroroughness of the interface. (a) Pyramidal asper-

ity, (b) surface of the inner cylinder.Fig. 2. Experimental setup.
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top and the bottom of the sample are insulated by
some alumina disks as described in [14].

3.2. Sample description

The composite cylindrical sample (Fig. 1) is built

from two concentric cylinders of 99 wt% pure nickel.
The surface of the inner cylinder is knurled and exhi-
bits truncated pyramidal macroasperities of rhombus

section (Fig. 3) and 4.5 � 10ÿ4 m height. Hence, the
valleys between the asperities have a triangular pro®le.
The surface of the outer cylinder is smooth in compari-

son with the inner one. After the knurling process, the
outer diameter of the inner cylinder is 2 � 10ÿ5 m
greater than the inner diameter of the hollow cylinder.
The inner cylinder is then contracted by liquid nitrogen

cooling and inserted into the hollow one. The sample
is cut in various thicknesses disks (Fig. 1). The stack
con®guration makes the drilling of the thermocouples

holes easier.
Each thermocouple wire is spot-welded to the

sample at the bottom of its hole. The whole part of

the sample which is between the positive and negative
wires welds of each thermocouple acts as the hot junc-
tions of the thermoelectric circuit (Fig. 1). Obviously,

this setup only works on electrical conductors; it brings
the following improvements:

. the diameter of the required holes is lowered. Even

if four holes are needed instead of two, the overall
disturbance of the thermal ®eld is smaller than in
the two holes con®guration, hence, experimental
conditions are closer to the hypothesis of a homo-

geneous cylinder.
. if the regions between the welds of the positive and

negative wires are isothermal, the thermocouples

give this temperature, otherwise a temperature inter-
mediate between the temperatures of the two welds
is obtained. The thermal contact between the bead

of the thermocouple and the sample is improved, the
thermocouple temperature is then closer to the
sample temperature. This point is theoretically and
experimentally demonstrated by Cassagne et al. [16]

in the frame of surface temperature measurements.

3.3. Phase change results

The amplitude decay measurements were not used
since the signal to noise ratio was not good enough.

Only phase change results are presented. The measure-
ments were performed under vacuum at 865 K and
under a pressure of 1.5 � 105 Pa of pure argon at 785

K and of pure helium at 750 K. The phase change of
the wave is plotted versus the period (Fig. 4) for the
three di�erent experimental conditions. For the same

thermocouple distance �b � 0:015 m), calculated isodif-
fusivity curves in the range (0.07 � 10ÿ4±0.11 � 10ÿ4

m2 sÿ1) are also plotted in Fig. (4). The di�usivity of a
99 wt% pure nickel lies within the range 0.11 � 10ÿ4±
0.14 � 10ÿ4 m2 sÿ1 at 750 K, and increases with the

temperature up to 0.12 � 10ÿ4±0.15 � 10ÿ4 m2 sÿ1 at
865 K. Hence, Fig. (4) shows o� that the observed
phase changes are higher than those which would be

obtained for a massive nickel sample of similar purity.
This is a clear evidence of the e�ect of the contact con-
ductance.

The increase in the scattering of the data, as the
period is lowered, is a direct consequence of the
decrease of the amplitude of the signal; for a given dis-
tance, short periods thermal waves are damped

stronger than long periods ones. Moreover, the signal
originating from the microfurnace is more attenuated
under argon and obviously under vacuum than under

helium, the thermal conductivity of which is higher.
This is the reason why the results under vacuum and
under argon are so scattered. Finally, only the data

obtained under helium have been used.
The thermal capacity, the density of the sample, the

distances a and b are known quantities. The conduc-

tivity can be calculated from the di�usivity, the ca-
pacity and the density. However, the di�usivity of the
sample is not known accurately, hence, Eq. (26) is an
equation in two unknowns: the contact conductance

and the di�usivity. As only phase information is avail-

Fig. 4. Phase change vs. period. W: helium, 750 K. +: argon,

785 K. O: vacuum, 865 K. Ð: ®t of the results under helium

atmosphere. - - - -: isodi�usivity curves for the pure nickel,

a � 7� 10ÿ4, 8� 10ÿ4, 9� 10ÿ4, 10� 10ÿ4 and 11� 10ÿ4 m2

sÿ1.
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able, a single measurement is not su�cient to ®nd the
two unknowns, it is necessary to use the measurements

set as a whole to achieve the best accuracy in the
identi®cation process.

3.4. The data reduction method and conductance results

The aim is to work out both, the unknown par-

ameters a and h from the data reported in Fig. (4) by
a ®t following the two parameters non-linear model
Eqs. (26)±(28). The non-linear least square ®t is

handled by the Levenberg±Marquardt algorithm [17]
based on the w 2 minimization:

w 2
ÿ
~p
� �XN

i�1

�
Fi ÿ F�Pi, �a, h��

si

� 2

�30�

where (Pi) are the various periods and �si� the corre-

sponding standard deviations.
The algorithm implements a double strategy: near

the minimum, the parameters variation is approxi-
mated by a quadratic form (inverse Hessian method)

while, far from the minimum, the steepest slope
method is used. Moreover, if the random measurement
error of each point is uncorrelated with the model, the

Hessian matrix can be simply calculated from the ®rst
derivatives of the model with respect to the par-
ameters. The calculations of the second derivatives are

not necessary.
The mathematical developments leading to the nu-

merical calculation of Eq. (26) and of the ®rst deriva-

tives versus h and a are reported in the Appendix.
As it can be seen in Fig. (4), the standard deviation
�si� is small as the period is great. For each period
(Pi), considering that (i) the w 2 minimisation is based

on the assumption that random errors follow a normal
distribution and (ii) an unbiased estimator of �si� is
given by DF=m where DF represents the sample width

and m is a parameter which depends on the number of
values in the sample [18]. The phase change measure-
ments under helium and the corresponding results of

the �si� estimation procedure are presented in Table 1.

Three minimizations are performed. At ®rst a two par-
ameters ®t, and then two ®ts of the conductance at

constant di�usivities are chosen at the limits of the
interval (0.11� 10ÿ4±0.14� 10ÿ4 m2 sÿ1).

The results are presented in Table 2. In the ®rst ®t

the adjusted di�usivity value 0.116 � 10ÿ4 m2 sÿ1 is
consistent with the range (0.11 � 10ÿ4±0.14 10ÿ4 m2

sÿ1).

3.5. Error due to the uncertainties on the distances a
and b

The maximum height of the asperities is 4.5 � 10ÿ4

m. The absolute error in the distance between the axis
of the cylindrical sample and the interface is Da �
22:25� 10ÿ4 m. The distance between the thermo-
couples is 1.5 � 10ÿ2 m, the diameter of the thermo-
couples is 1 � 10ÿ3 m. The absolute error on the

location of the outer thermocouple is Db �25� 10ÿ4

m. The errors which are induced in the conductance by
Da and Db are calculated in Table 3.

In the error calculations, the possible erroneous lo-
cation of the inner thermocouple is not taken into
account. Actually, a displacement of this thermocouple

to r$0 modi®es the analytical expression (Eq. (26)) of
the phase change. As a consequence, an error calcu-
lation like the one that was done to estimate the error
due to a change in the distance b is not straightfor-

ward. Simple overestimation of the total error is given
by increasing twofold the outer thermocouple error
because, in cylindrical geometry, two isophase curves

around the location r are all the nearer that r is higher
[19]. Hence, a displacement of the inner thermocouple
yields a smaller error than a displacement of the outer

thermocouple.

4. Comparison with a conductance model

The surface of the inner cylinder exhibits macroas-
perities distributed periodically. In this geometry, the

thermal ®eld can be split into n identical ¯ux tubes.
The heat equation can be solved inside an elementary
¯ux tube. The resistances of all the tubes are combined

in parallel to yield the total resistance of the interface.

Table 2

Fit of the parameters relative to the measurements under

helium

Parameter 104a (m2 sÿ1) 10ÿ4h (W mÿ2 Kÿ1) w 2

a and h 0.116 1.05 143

h 0.11 1.16 144

h 0.14 0.815 146

Table 1

Phase change measurements under helium atmosphere and

standard deviation estimation

Period (s) 66.4 102.1 145.4 303.7 491.4

Fi (rad) 0.6966 0.4615 0.3193 0.1601 0.1015

0.6995 0.4574 0.3226 0.1582 0.1016

0.6841 0.4702 0.3209 0.1586 0.1004

0.6954 0.4654 0.1579 0.1014

DF (rad) 0.0154 0.0128 0.0033 0.0022 0.0012

si estimated (rad) 0.0075 0.0062 0.0019 0.0011 0.0006
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In the model [20], the interface is a plane and the
¯ux tubes are cylinders. The thermal contact resistance

can be written as a function of the ratio S� between
the contact area and the cross section of the elemen-
tary ¯ux tube:

Rs �
���
p
p

2 � ls
������������
S � � np �

ÿ
1±1:41 �

������
S �
p �

� 2 � d
S � � ls �

�1ÿ S � �

where n is the number of the ¯ux tubes per unit area,

ls is the harmonic mean of the conductivities,
�2=ls � 1=lI � 1=lII)d is the mean height of the asperi-
ties weighted by the conductivities:

d � lI � dI � lII � dII

lI � lII

where dI and dII are the height of the asperities in ma-
terials I and II, respectively. In the nickel/nickel

sample, only the inner cylinder is knurled then ls � l,
dII � 0 and d � d=2 where d is the average height of
the asperities.

Four parameters are needed to calculate the thermal
resistance: the conductivity of the material, the asperi-
ties height, the solid/solid contact area and the elemen-
tary ¯ux tube area.

The asperities have the shape of a truncated pyra-
mid, the base of which is a rhombus (Fig. 3). The base
of the pyramid is the ¯ux tube area. The area of the

top of the pyramid is the solid/solid contact area. This
area is parallel to the base. The diagonals of the ¯ux
tube are denoted by Lft and lft, the diagonals of the

contact area are denoted by Lc and lc. The numerical
values of the diagonals are measured from a photo-
graph of the surface of the inner cylinder and corrected
to verify the geometrical relation:

lc=lft � Lc=Lft

.

Lft = 3� 10ÿ3 m, lft=17� 10ÿ4 m, Lc=8.6� 10ÿ4

m and lc=4.8� 10ÿ4 m.

Sft=2.6 � 10ÿ6 m2 and Sc = 21 � 10ÿ8 m2. The

ratio of the areas Sc/Sft equals 0.081.

The number of the ¯ux tubes per unit area: n �
Sÿ1ft � 38� 104 ¯ux tubes mÿ2.

The valleys between the asperities exhibit a triangu-

lar pro®le. Hence, if the curvature of the interface is

neglected, the average height of the asperities �d �
2:25� 10ÿ4 m) is half the maximum height (4.5� 10ÿ4

m). The conductance by solid/solid contact is calcu-

lated for three di�usivity values in Table 4.

On the assumption that a perfect thermal contact is

established between the asperities. The contribution lf

of the intersticial medium to the total conductance of

the interface is overestimated by: lf � lgas=d: Actually,

this formula is valid only if the solid/solid contact area

is neglected. To the extent that the mean height of the

asperities is very much greater than the gas mean free

path and that the gas pressure is greater than 105 Pa,

the gas accommodation e�ect is negligible. The ther-

mal conductivity of helium at 750 K and 105 Pa is

0.292 W mÿ1 Kÿ1 [21]. The total contact conductance

h is the sum of the two contributions 1/Rs and lf

(Table 4).

Tables 2 and 4 show o� that a good agreement is

achieved between the measured and the calculated con-

ductances when the di�usivity and the conductance are

adjusted simultaneously. When the di�usivity is held

constant �a � 0:11� 10ÿ4 or 0.14 � 10ÿ4 m2 sÿ1) and

according to the identi®cation procedure, the dis-

crepancy lies within the range 8±40%. These obser-

vations tend to con®rm that the di�usivity of the

sample is close to 0.116� 10ÿ4 m2 sÿ1.
The discrepancy between the measurements and the

model can have several origins. The experimental

errors have been quanti®ed in the former paragraph,

the curvature of the sample interface is neglected in the

model and the expression of the constriction function

in the model is relevant to circular contact spots,

Table 3

Errors on the conductance due to the uncertainties on a and b

104a (m2 sÿ1) a (m) b (m) 10ÿ4h (W mÿ2 Kÿ1) Dh/h (%)

0.11 0.013 0.015 1.14 0

0.11 0.013 0.0155 1.31 +14.9

0.11 0.013 0.0145 1.01 ÿ11.4
0.11 0.013225 0.015 1.16 +1.75

0.11 0.012775 0.015 1.12 ÿ1.75
0.14 0.013 0.015 0.793 0

0.14 0.013 0.0155 0.857 +8.07

0.14 0.013 0.0145 0.741 ÿ6.56
0.14 0.013225 0.015 0.808 +1.89

0.14 0.012775 0.0155 0.779 ÿ1.76
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hence, in the present case a shape factor should be
introduced.
Moreover, the knowledge of the thermal properties

of the materials in contact is very important because
simultaneous identi®cation of the conductance and the
di�usivities is not always possible and depends on the
random errors on the phase change. The number of

phase change measurements at a given frequency and
the number of frequencies should be increased to
improve the con®dence in the statistical reduction

method. Modi®cations of the experimental setup allow-
ing to increase the spatial resolution of the temperature
measurements are now under investigation.

Nevertheless, the orders of magnitude of the
measurement and of the model agree well, which was
the ®rst goal of this preliminary work.
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Appendix A. Explicit analytical expressions of the phase

change and its ®rst derivatives

The phase change (Eq. (26)) is de®ned by:

F � ÿArg�A�,where

A � y�b� � Bi
�e � a� 2i � I 0a

ÿ
I 0a � Kb ÿ Ib � K 0a

�� Bi � Ib
:

The complex Bessel functions are to be expanded
into their real and imaginary parts using the Kelvin
functions [22], to calculate Arg(A ). The Kelvin func-

tions (ber, bei, ker, kei) and their ®rst derivatives (ber ',
bei ', ker ', kei ') are numerically calculated using poly-
nomial approximations [22]. The Kelvin functions of

order 1 (ber1, bei1, ker1, kei1) are linear combinations
of the ®rst derivatives [22]. The second derivatives
(ber0, bei0, ker0, kei0) are obtained by derivation of the

polynomial approximations of the ®rst derivatives.
Let exp1 to exp5, RE and IM be auxiliary ex-

pressions such that:

exp 1 � 2 � ber1�e � a� � bei1�e � a�

exp 2 � ber 21 �e � a� ÿ bei 21 �e � a�

exp 3 � bei1�e � a� � kei1�e � a� ÿ ber1�e � a� � ker1�e � a�

exp 4 � ber1�e � a� � kei1�e � a� � bei1�e � a� � ker1�e � a�

RE � exp 1 � ker�e � b� � exp 2 � kei�e � b� � exp 3 � bei�e

� b� ÿ exp 4 � ber�e � b�

IM � exp 1 � kei�e � b� ÿ exp 2 � ker�e � b� ÿ exp 3 � ber�e

� b� ÿ exp 4 � bei�e � b�

exp 5 � �e � a�
2�IM� Bi � bei�e � b�

�e � a� 2�RE� Bi � ber�e � b�

The phase change is then given by:

F � tanÿ1�exp5 �
The derivative with respect to the conductance is given

by:

@F
@h
� 1

1� exp 52
� a

r � Cp � a

� �e � a�
2��RE � bei�eb� ÿ IM � ber�eb��ÿ
�e � a� 2�REÿ Bi � ber�eb�

� 2
With the following expressions:

BR2A � ber 00�e � a� ÿ bei 00�e � a����
2
p

BI2A � ber 00�e � a� � bei 00�e � a����
2
p

KR2A � ker 00�e � a� ÿ kei 00�e � a����
2
p

Table 4

Conductances calculated with the model

104a (m2 sÿ1) 10ÿ3Cp (J kgÿ1 Kÿ1) 10ÿ2l (W mÿ1 Kÿ1) 10ÿ4/Rs (W mÿ2 Kÿ1) 10ÿ4lf (W mÿ2 Kÿ1) 10ÿ4h (W mÿ2 Kÿ1)

0.11 0.53 0.52 0.93 0.13 1.06

0.116 0.53 0.55 0.99 0.13 1.12

0.14 0.53 0.66 1.18 0.13 1.31
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KI2A � ker 00�e � a� � kei 00�e � a����
2
p

exp 1 0 � ÿe � a
a
� �ber1�e � a� � BI2A� bei1�e � a� � BR2A�

exp 2 0 � ÿe � a
a
� �ber1�e � a� � BR2Aÿ bei1�e � a� � BI2A�

exp 3 0 � ÿ e � a
2 � a � �kei1�e � a� � BI2A� bei1�e � a� � KI2A

ÿ ker1�e � a� � BR2Aÿ ber1�e � a� � KR2A�

exp 4 0 � ÿ e � a
2 � a � �kei1�e � a� � BR2A� ber1�e � a� � KI2A

� ker1�e � a� � BI2A� bei1�e � a� � KR2A�

RE 0 � ÿ e � b
2 � a �

ÿ
exp 1 � ker 0�e � b� � exp 2 � kei 0�e � b�

� exp 3 � bei 0�e � b� ÿ exp 4 � ber 0�e � b��� exp 1 0

� ker�e � b� � exp 2 0 � kei�e � b� � exp 3 0 � bei�e � b�

ÿ exp 4 0 � ber�e � b�

IM 0 � ÿ e � b
2 � a �

ÿ
exp 1 � kei 0�e � b� ÿ exp 2 � ker 0�e � b�

ÿ exp 3 � ber 0�e � b� ÿ exp 4 � bei 0�e � b��� exp 1 0

� kei�e � b� ÿ exp 2 0 � ker�e � b� ÿ exp 3 0 � ber�e � b�

ÿ exp 4 0 � bei�e � b�

exp 5 0 � �e � a� 2�
�

RE 0 ÿ RE

a

�

exp 7 0 � �e � a� 2�
�

IM 0 ÿ IM

a

�

exp 6 �
ÿ
�e � a� 2�RE� Bi � ber�e � b�

�
�
 
�e � a� 2�

�
IM 0 ÿ IM

a

�
ÿ Bi � e � b

2 � a � bei 0�e � b�

ÿ lc � a
r � Cp � a 2

� bei�e � b�
!

ÿ
ÿ
�e � a� 2�IM� Bi � bei�e � b�

�
�
 
�e � a� 2�

�
RE 0 ÿ RE

a

�
ÿ Bi � e � b

2 � a � ber 0�e � b�

ÿ lc � a
r � Cp � a 2

� ber�e � b�
!

The derivative with respect to the di�usivity is given by:

@F
@a
� 1

1� exp 52
� exp 6ÿ
�e � a� 2�REÿ Bi � ber�eb�

� 2

References

[1] L.S. Fletcher, Recent developments in contact conduc-

tance heat transfer, ASME Journal of Heat Transfer

110 (1988) 1059±1070.

[2] M. Laurent, J.L. Macqueron, A. Gery, G. Sinicki,

Thermodynamique: La meÂ thode du signal bref appli-

queÂ e aÁ la mesure des reÂ sistances thermiques de contact,

C. R. A. S. Paris B265 (2) (1967) 1369±1371.

[3] A.J. AngstroÈ m, Neue Methode das

WaÈ rmeleitungsvermoÈ gen der KoÈ rper zu Bestimmen,

Annalen der Physic und Chemie 114 (1861) 513±530.

[4] C. Saint Blanquet, J.P. Bardon, Etude des transferts de

chaleur entre solides accoleÂ s en reÂ gime thermique sinu-

soiÈ dal, C. R. A. S. Paris B273 (1971) 109±112.

[5] N.J. Robinson, M. Tomsic, Thermal contact resistance

by re¯ection of heat di�usion waves, Nuclear

Technology 12 (4) (1971) 393±403.

[6] H. Cordier, J.C. Payrault, J.J. Vullierme, Etude de l'in-

¯uence des reÂ sistances thermiques de contact sur les

transferts de chaleur entre mateÂ riaux accoleÂ s dans les

pheÂ nomeÁ nes transitoires, Entropie 65 (1975) 20±29.

[7] T. Nguyen-Minh, G. Neuer, Measurement of thermal

gap resistance and contact resistance by the modulated

heating method, High Temp. High Press 13 (1981) 113±

118.

[8] R.D. Cowan, Proposed method of measuring thermal

di�usivity at high temperatures, Journal of Applied

Physics 32 (7) (1961) 1363±1370.

[9] G.M. Ayers, L.S. Fletcher, C.V. Madhusudana,

Thermal contact conductance of composite cylinders, J.

of Thermophysics and Heat Transfer 11 (1) (1997) 72±

81.

[10] A. Degiovanni, Yin Zhang Xiaojing, ModeÁ le de reÂ sist-

ances thermiques de contact entre deux surfaces cylin-

P. Benigni et al. / Int. J. Heat Mass Transfer 43 (2000) 4217±42274226



driques: approche microscopique 3D, Int. J. Heat Mass

Transfer 41 (3) (1998) 601±612.

[11] C.V. Madhusudana, A.L. Litvak, Thermal contact con-

ductance of composite cylinders: an experimental study,

J. of Thermophysics 4 (1) (1990) 79±85.

[12] B. Fourcher, J.P. Bardon, H. Mallard, Transfert de cha-

leur en reÂ gime peÂ riodique aÁ l'interface de deux milieux:

ProbleÁ mes poseÂ s par l'ecriture des conditions aux limites

classiques, Entropie 64 (1975) 11±26.

[13] N.W. Mac Lachlan, Bessel Functions for Engineers, 2nd

ed., Clarendon Press, Oxford, England, 1955, p. 204

(formula 219).

[14] J. Khedari, P. Benigni, J. Rogez, J.C. Mathieu, New ap-

paratus for thermal di�usivity measurements of refrac-

tory solid materials by the periodic stationary method,

Rev. of Sc. Instr. 66 (1) (1995) 193±198.

[15] J. Khedari, P. Benigni, J. Rogez, J.C. Mathieu, A sol-

ution of the heat conduction equation in the ®nite cylin-

der exposed to periodic boundary conditions: the case

of steady oscillation and constant thermal properties,

Proc. R. Soc. Lond. A 438 (1992) 319±329.

[16] B. Cassagne, J.P. Bardon, J.V. Beck, Theoretical and

experimental analysis of two surfaces thermocouples, in:

8th Int. Conf. of Heat Transfer, 1986, San Francisco,

1992, pp. 483±488.

[17] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T.

Vetterling, Numerical Recipes, Cambridge University

Press, Cambridge, 1988.

[18] CEA, Statistique appliqueÂ e aÁ l'exploitation des mesures,

1, Masson ed., 1978, p. 70 and p. 51 of the tables

session.

[19] J. Khedari, Mesure de di�usiviteÂ thermique aÁ haute tem-

peÂ rature par une meÂ thode peÂ riodique et eÂ tude de trans-

fert thermique en geÂ omeÂ trie cylindrique, Thesis,

UniversiteÂ de Provence Aix-Marseille I, 1990.

[20] J.P. Bardon, Introduction aÁ l 'eÂ tude des reÂ sistances ther-

miques de contact, Revue GeÂ neÂ rale de Thermique

Franc° aise 125 (5) (1972) 429±447.

[21] R.W. Powell, C.Y. Ho, P.E. Liley, in: R.C. Weast (Ed.),

Handbook of Chemistry and Physics, 54th ed., CRC

Press, Boca Raton, 1973/74.

[22] M. Abramowitz, I.A. Stegun, Handbook of

Mathematical Functions, 9th ed., Dover Pub. Inc, New

York, 1970.

P. Benigni et al. / Int. J. Heat Mass Transfer 43 (2000) 4217±4227 4227


